Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## Magnetic Properties of CeNi₂Ge₂ C.D.Frost¹, B.D.Rainford², F.V.Carter³, S.S.Saxena³ - ¹ ISIS Facility, Rutherford Appleton Laboratory, OX11OQX,UK - ² Dept. of Physics, University of Southampton, SO171BJ, UK - ³ Cavendish Laboratory, Cambridge University, CB30HE, UK The magnetic susceptibility of the non-Fermi liquid heavy fermion compound CeNi_2Ge_2 is highly anisotropic. The c-axis susceptibility has a broad maximum near 30K, which has previously been ascribed to short range AF correlations; at low temperatures there is a weak upturn in $\chi_c(T)$, while the easy axis switches from [001] to [100]. We have carried out a polarised neutron study of the induced moment in a field of 4.6T which shows that the upturn in $\chi_c(T)$ is intrinsic. Inelastic neutron scattering revealed two components to the magnetic response, a broad crystal field excitation, centred on 25 meV, and a quasi-elastic component. Using these data we present an analysis of the single crystal susceptibility, based on a crystal field model, that describes all the main features, including the maximum in $\chi_c(T)$ and the change in sign of the anisotropy with temperature. This model may give further insight into the origins of non-Fermi liquid behaviour in this compound.